Limit distribution of distances in biased random tries
نویسندگان
چکیده
منابع مشابه
Limit Distribution of Distances in Biased Random Tries
The trie is a sort of digital tree. Ideally, to achieve balance, the trie should grow from an unbiased source generating keys of bits with equal likelihoods. In practice, the lack of bias is not always guaranteed. We investigate the distance between randomly selected pairs of nodes among the keys in a biased trie. This research complements that of Christophi and Mahmoud (2005); however, the res...
متن کاملStudy of Random Biased d-ary Tries Model
Tries are the most popular data structure on strings. We can construct d-ary tries by using strings over an alphabet leading to d-ary tries. Throughout the paper we assume that strings stored in trie are generated by an appropriate memory less source. In this paper, with a special combinatorial approach we extend their analysis for average profiles to d-ary tries. We use this combinatorial appr...
متن کاملThe Oscillatory Distribution of Distances in Random Tries
We investigate ∆n, the distance between randomly selected pairs of nodes among n keys in a random trie, which is a kind of digital tree. Analytical techniques, such as the Mellin transform and an excursion between poissonization and depoissonization, capture small fluctuations in the mean and variance of these random distances. The mean increases logarithmically in the number of keys, but curio...
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملAnalysis of random LC tries
LC tries were introduced by Andersson and Nilsson in 1993. They are compacted versions of tries or patricia tries in which, from the top down, maximal height complete subtrees are level compressed. Andersson and Nilsson (1993) showed that for i.i.d. uniformly distributed input strings, the expected depth of the LC patricia trie is (log n). In this paper, we reene and extend this result. We anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2006
ISSN: 0021-9002,1475-6072
DOI: 10.1017/s0021900200001704